S 363.1251 H3es 1980

ENGINEERING STUDY OF SELECTED LOCATIONS EXPERIENCING HIGH ACCIDENT FREQUENCY UNDER SNOWY AND ICY ROADWAY CONDITIONS

STATE DOCUMENTS COLLECTION

11AY 1 6 2003

MONTANA STATE LIBRARY 1515 F 6th AVE HELENA MONITANA 596 10 PREPARED BY PROJECT PLANNING SECTION PLANNING AND RESEARCH BUREAU ENGINEERING DIVISION MONTANA DEPT. OF HIGHWAYS

IN COOPERATION WITH

MONTANA DEPT. OF COMMUNITY AFFAIRS HIGHWAY TRAFFIC SAFETY DIVISION

TABLE OF CONTENTS

Introduction	
Objective	
Observation	•••••••••••••••••••••••••••••••••••••••
Conclusion	
Average Daily Traffic	•••••••••••••••••••••••••••••••••••••••
Study Areas By Division	
Kalispell Division	
Missoula Division	
Bozeman Division	
Butte Division	
Billings Division	
Havre Division	

. .

~

INTRODUCTION

The Montana Department of Community Affairs - Highway Traffic Safety Division and the Montana Department of Highways entered into contract to conduct engineering studies of twenty-two selected sections of roadway, statewide, that have experienced the highest accident occurrence under snow covered or icy roadway conditions. This project was accomplished with the cooperation of the Federal Highway Administration and other agencies.

Highway Traffic Safety Division identified the twenty-two roadway sections by the use of the Highway Information System Accident Computer Program. Each roadway section consisted of ten miles in length. Fifteen of the roadway sections were located on the Federal Aid Interstate System. The remaining seven were located on the Federal Aid Primary System. The majority of the roadway sections were located in the western portion of Montana where heavily forested mountainous type terrain previals. Many of the identified roadway sections included roadways that traverse high mountain passes. Other predominent sections included roadways near cities where high population and high traffic volume exposure exists. Accident frequency was prevalent at interstate interchanges and major intersections.

Following is a listing of the areas identified as experiencing the highest snowy and icy roadway accident frequency statewide initiating concern for engineering studies and this report:

F. A. ROUTE	NUMBERED ROUTE	MILEPOST	LOCATION
1. I 15	I 15	120-130	Butte East and West
2. I 90	I 90	0-10	Idaho Border East (Lookout Pass)

-2-

3.	I 90	I 90	30-40	St. Regis East and West (Omitted)
4.	I 90	I 90	80-90	Frenchtown West
5.	I 90	I 90	100-110	Missoula East and West
6.	I 90	I 90	130-140	Missoula - Drummond
7.	I 90	I 90	140-150	Missoula - Drummond
8.	I 90	I 90	170-180	Garrison
9.	I 90	I 90	230-240	Butte - Whitehall (Homestake Pass)
10.	I 90	I 90	300-310	Belgrade - Bozeman
11.	I 90	I 90	310-320	Bozeman - Livingston (Bozeman Pass)
12.	I 90	I 90	320-330	Bozeman - Livingston (Bozeman Pass)
13.	I 90	I 90	330-340	Livingston East
14.	I 90	I 90	370-380	Big Timber East (Omitted)
15.	I 90	I 90	430-440	Laurel East and West
16.	FAP 1	US 2	140-150	Columbia Falls - Northeast
17.	FAP 1	US 2	210-220	East Glacier - Northeast
18.	FAP 5	US 93	0-10	Missoula - North
19.	FAP 24	MT 200	0-10	Bonner - East
20.	FAP 50	US 191	50-60	Bozeman (Gallatin Canyon)
21.	FAP 50	US 191	60-70	Bozeman (Gallatin Canyon)
22.	FAP 86	MT 86	0-10	Bozeman (Bridger Canyon)

All accident history for each study area was collected for the time periods of January 1, 1972 to the latest available in the computer information system. The accident data included all accidents and was not limited to those only occurring

-3-

when the roadway was snowy or icy. If reconstruction of the study areas occurred after January 1, 1972, accident information was applied from the date the roadway was opened to thru traffic. Construction zone accidents were not used. Some of the study areas were either under construction or had recently been opened to traffic and little or no accident information was available. These areas were omitted from the engineering study project.

Accident collision diagrams showing placement of each accident and the type of collision was prepared on highway construction plans for each study area. Additional statistical accident information pertaining to the particulars of each accident was also shown on the collision diagram. Accident analysis computer programs summarizing a variety of statistical accident data to include accident rates and severity rate computations for each area was obtained. The above material was prepared for use in eventual on-site field reviews of the study areas, which were conducted during 1980. the following material summarizes the process, objectives and conclusions of the twenty-two study areas.

-4-

OBJECTIVE

Montana, being a snow belt state, is faced with combating snow and ice control on its roadways several months of the year. Accident statistics show that approximately 26.6% of the total accidents that occured between 1976 - 1979 happened on snowy or icy roadways. Snow, ice, wind, limited visibility, etc., are all major factors affecting the safety of the traveling public during winter driving. These factors are of great concern to agencies responsible for designing, constructing and maintaining highway facilities.

Concentrated efforts, in the winter of 1979, by maintenance personnel, in cooperation with DCA - Highway Traffic Safety Division, was placed at the twenty-two roadway sites identified as experiencing the highest accident frequency during snowy or icy roadway conditions. These efforts included additional sanding operations, increased man hours and equipment.

The primary objective of the engineering studies, was to review and discuss the twenty-two locations by representatives of various governmental agencies as a team to document observations and viewpoints and possibly recommend any changes for future design or other practices that could aid roadway safety during periods of snow and ice conditions. Other recommendations to enhance driver safety on a year around basis was also to be considered. The intent of the study was to perform on-site reviews of the roadway geometrics, surfacing, traffic control devices and other design applications at the selected sites for comment and possible revisions or changes. Maintenance operations and practices were not the major focus of the study.

-5-

Members of various State and Federal Agencies responsible for implementing and administrating highway engineering design, safety and maintenance, formed to comprise a diagnostic team. The diagnostic team performed on-site field reviews of the tweny-two study areas in the summer and fall of 1980. Considerable discussion took place concerning all roadway aspects of the study areas during the course of the field reviews. Particular attention was focused on specific locations within the study areas that showed a grouping or cluster of accidents. The field reviews concluded at each study area with group discussions to exchange observations and viewpoints for possible future design practices and recommendations.

OBSERVATION

During the course of conducting on-site reviews by the diagnostic team, numerous conditions were generally characteristic with every area observed. The following listing summarized some of these predominant conditions:

1. A condition that exists without a satisfactory solution is melting snow running across the roadway during the warm period of the day and freezing at night causing an icing condition. This frequently happens on curve sections when snow build up is not or cannot be pushed far enough off the shoulder on the high side to allow runoff to flow away from the roadway instead of across it.

The state of Indiana installed a pavement drainage system that helped correct an icing condition on a curve that was causing accidents. The drainage system was a slotted drain pipe with a continuous steel grate welded on the slot. The pipe was buried along the shoulder edge on the high side of the curve so the slot is exposed and level with the surface. Water enters the slot to the pipe below and is channeled to an outlet. The objective to catch runoff of melting snow from the shoulder before reaching the traveled way worked successfully.

A similar drainage system has been used on a limited basis in Montana to trap water near a standard catch basin and is also planned be used experimentally on the high side of a curve located on McDonald Pass near Helena or at a similar location experiencing icing conditions.

-7-

Disadvantages to the use of these devices for trapping melting snow could increase maintenance upkeep and costs in the event the slotted drain becomes clogged or filled with debris.

- 2. The design of new highway facilities has incorporated features addressing highway safety and recognize maintenance needs in respect to snow and ice control. Design criteria to elevate roadbeds, provide flat safety inslopes and backslopes and backslope rounding, to name a few, have drastically aided in reducing the length of time roadways are snowpacked or icy. The use of modern engineering designs such as snowfence installations at identified areas where heavy drifting occurs enhances roadway safety by increasing visability, controls roadway snow and ice and lessens maintenance obligations.
- 3. Practiced design criteria in some areas contribute to problems in the control and removal of snow and ice. The installation of solid W beam guardrail, in addition to being a roadside obstacle, creates a snowfence action during blizzard conditions causing drifting and reducing driver visability. The existence of W beam guardrail in some locations does not allow maintenance personnel to remove the snow clear of the roadway surfaces. Wind rowing of snow adjacent to the rail compounds a snowfence condition and can cause roadway icing.

Other elevated appurtenances such as bridge rails, signing and delineation can cause drifting and inhibit proper snow removal and storage.

Channelized intersections using raised barriers to define islands or lane separations for traffic control create maintenance problems during

-8-

and after snow storms. These barriers contribute to sheet icing of adjacent pavements if proper grading and drainage structures are not provided.

Bridge decks remain a constant threat to roadway safety during winter months. On super elevated bridges where snow plowing has created snow buildup on the sidewalks or brush curb, snowmelt causes icing if suitable drainage is not provided it becomes clogged. Under specific temperature conditions, bridge decks often freeze and become icy when at the same period the approach to the bridge are clear and dry. During plowing operations, pushing snow to the roadway below on bridges or overstructures which span another highway facility is also of major concern.

Uneven or rutted roadway surfaces can limit complete snow removal and subject the motoring public to an undesirable driving discomfort. This condition can exist on sections where the joining or meet line of the concrete driving surface lane and an asphalt shoulder do not maintain the same elevation.

4. Due to the geographic configuration of the majority of the study areas reviewed a predominent situation existed. Most roadways reviewed traverse heavily timbered mountainous type terrain. These conditions limit the amount of time sunlight is exposed to the pavement surface inhibiting natural and mechnical snowy and ice removal.

Continuous steep mountain hillslopes adjacent to the roadways create shaded areas which lenghthens the time snow and ice prevails on the roadway surface at specific locations.

-9-

5. A number of completed safety projects were observed that were constructed cost-beneficially on past accident experience. It was apparent the states safety program to identify hazardous locations and work toward effective correction of them is being accomplished.

CONCLUSION

The burden of snow and ice control on Montana's roadways affects in part all governmental agencies responsible for achieving the safest highway facilities possible for the motoring public. Primarily, the major obligation of snow and ice control lies within the operations performed by the jurisdicting maintenance body. This often entails combating natural forces and geographic conditions where no roadway altercations are feasible.

To lighten the burden placed on maintenance obligations, design and construction engineers have adopted an implemented new safety standards that consider maintenance needs. It is impairative that all responsible agencies continue to recognize the implications of snow and ice control and other maintenance problems on a year around basis and take appropriate actions to rectify them in the planning, design and construction process.

It is concluded that maintenance functions provide driving safety to the motoring public by implementing and maintaining design standards in accordance with adopted policies. These functions are the only provisions furnished the roadway users until such time as complete reconstruction to incorporate the latest design features can be accomplished. To maximize driving safety a continuing effort must be placed to uniformally maintain roadways in accordance with adopted policies.

-11-

٥

SNOWY AND ICY STUDY AREAS

ESTIMATED AVERAGE DAILY TRAFFIC

Route	Milepost	Estimated ADT For				
		Year	Dec.	Jan.	Feb.	Mar.
I-15	120-130	1976 1977 1978 1979	4650 5390 4810 5170	4110 4840 4567	5510 4990 5010	5480 5830 5810
I - 90	0-1 .	1976 1977 1978 1979	2300 2770 2630 2290	2570 2160 1840	2750 2410 2080	3090 3060 2570
I - 90	21-44	1976 1977 1978 1979	2230 2320 2650 3150	2150 2170 2530	2300 2430 2870	2590 3090 3540
I - 90	80-90	1976 1977 1978 1979	2990 2820 3230 3240	2610 2650 2600	2800 2960 2950	3150 3760 3640
I - 90	96-110	1976 1977 1978 1979	5590 5160 5900 5620	4370 5140 5190	5630 5680 5970	5910 6920 7110
I - 90	130-153	1976 1977 1978 1979	3420 2680 3171 3630	2460 2760 3350	2920 3060 3860	3070 3720 4590
I - 90	170-185	1976 1977 1978 1979	3520 3270 3200 2880	3000 2790 2660	3570 3090 3060	3750 3760 3650
I – 90	229-242	1976 1977 1978 1979	2900 3270 2920 3050	2490 2930 2690	3040 3020 2950	3320 3535 3430

Route	Milepost	V		ed ADT For		Maria
I - 90	298-311	Year 1976	Dec. 3990	Jan.	Feb.	Mar.
1-90	290-311	1977 1978	4280 3790	3590 3420	4380 3980	4610 4870
		1979	5290	4170	4950	6080
1 - 90	311-330	1976 1977	3730 4010	3370	4110	4330
		1978 1979	3550 4820	3210 3800	3730 5410	4570 5540
1 - 90	330-340	1976 1977	3150 3110	2610	21.00	2260
		1977 1978 1979	2740 3570	2610 2470 3330	3180 2880 3960	3360 3520 4600
1-90	369-391	1975	2950	3330	3900	4000
1-50	303-331	1977 1978	2650 2630	2220 - 2380	2710 2760	2860 3380
		1979	3480	2740	3260	4000
I - 90	429-445	1976 1977	7330 7230	6290	7110	6960
		1978 1979	7870 7670	6740 7120	7050 7390	8000 8530
Ρ-01	138-153	1976 1977	2010 1630	1630	2070	2160
		1977 1978 1979	1600 3080	1470 2160	1830 2030	2550 2710
P-01	209-222	1976	850		2000	2710
		1977 1978	720 730	720 670	910 830	950 1160
		1979	900	630	590	790
P-05	0-15	1976 1977	3170 2640	2470	3060	3030
		1978 1979	2770 2970	2510 2390	2830 2900	3360 3520
P-24	0-32	1976 1977	1390 1450	1360	1510	1550
		1978 1979	1630 1740	1480 1440	1600 1550	1750 1750
P-50	47-81	1976	1530	1.1.0	1000	2.00
		1977 1978	910 940	930 980	1060 1070	960 1360
		1979	1120	930	1070	1170

Route	<u>Milepost</u>	Estimated ADT For					
		Year	Dec.	Jan.	Feb.	Mar.	
P-86	0-19	1976 1977 1978 1979	980 1350 1110 1380	1380 1150 1150	1580 1270 1310	1440 1600 1430	

Columbia Falls - Northeast US #2 (FAP 1) Milepost 140-150 Kalispell Division

General: Federal Aid Primary Road, built in the 1930's. Paved width varies from 20' to 24'. The roadway traverses the Flathead River with numerous curves and connects several small towns within the study area.

.

Comments: The Roadway is currently in the planning stage for 4-lane reconstruction. Contract letting has been curtailed pending court action.

> Minor safety features have been placed at three locations where higher than normal accident frequency has occurred. The South Fork River Bridge and adjacent curve has been provided special chevron delineation.

> Special side of the road delineation (x-1-1 Hazard Markers) was placed on a series of curves near Martin City.

A safety project to flatten inslopes and delineate a curve was completed at milepost 147.7 - 148.3. The curve is locally known as the "Dew Drop Curves."

ACCIDENT CLUSTER DETAILS FAP 1 MP 140 - MP 150

SITE # 1 6 Accidents total 0% Eastbound 17% Icy or Snowy 50% Dark

SITE # 2 5 Accidents total 40% Eastbound 60% Icy or Snowy 80% Dark

SITE # 3 11 Accidents total 27% Eastbound 36% Icy or Snowy 64% Dark

SITE # 4 5 Accidents total 100% Eastbound 0% Icy or Snowy 80% Dark SITE # 5 5 Accidents total 40% Eastbound 20% Icy or Snowy 20% Dark

SITE # 6 6 Accidents total 33% Eastbound 50% Icy or Snowy 67% Dark Frenchtown - West Interstate 90 Milepost 80 - 90 Missoula Division

- General: The Study area is a 4-lane section with concrete driving lanes and asphalt shoulders. At Milepost 80 - 82 a recently completed add two lanes project was opened to the driving public in 1979. The section traverses fairly level terrain.
- Comment: Accident experience for this section was misplaced, therefore is not reflected on the ajoining map. A clustering of accidents has occured at approximately Milepost 82 on a verticle curve. A clustering of accidents has also occured on a curve section at Milepost 88.5<u>+</u> and at the Frenchtown Interchange at Milepost 89.5<u>+</u>.

1 90

MILEPOST 80 - MILEPOST 90

Missoula East and West Interstate 90 Milepost 100 - 110 Missoula Division

General: This study area extends through the city of Missoula. Numerous interchanges and high traffic volumes are present. The roadway was constructed in 1966 with the driving surface PCC Concrete.

Comments: Accident frequency is scattered throughout the section with a buildup at or near the interchanges.

ACCIDENT CLUSTER DETAIL I 90 MP 100 - MP 110

SITE # 1 7 Accidents total 57% Eastbound 71% Icy or Snowy 57% Dark

SITE # 2 10 Accidents total 10% Eastbound 90% Icy or Snowy 10% Dark

SITE # 3 12 Accidents total 50% Eastbound 8% Icy or Snowy 50% Dark

Missoula - Drummond Interstate 90 Milepost 130 - 140 140 - 150 Missoula Division

- General: This study section contains two 10-mile contiguous sections. Various construction years to complete the four-lane facility took place. The entire 20-mile section has a plant mix surface treatment.
- Comment: Accident frequency is spread througout the study area. Several clusters of accidents were noted primarily on curve sections and at bridges. A safety project at Milepost 145<u>+</u> entailed concrete median barrier and was near the Bearmouth Rest Area. A nearby hot water spring instigated foggy and icing conditions. This improvement has substantially reduced accident frequency and severity at this location.

ACCIDENT CLUSTER DETAIL I 90 MP 130 - MP 150

SITE # 1 10 Accidents total 70% Eastbound 90% Icy or Snowy 50% Dark

SITE # 2 9 Accidents total 67% Eastbound 78% Icy or Snowy 22% Dark

SITE # 3 12 Accidents total 100% Eastbound 83% Icy or Snowy 17% Dark

<u>SITE # 4</u> 12 Accidents total 50% Eastbound 58% Icy or Snowy 33% Dark SITE # 5 8 Accidents total 63% Eastbound 88% Ecy or Snowy 0% Dark

SITE # 6 10 Accidents total 20% Eastbound 70% Icy or Snowy 30% Dark

Missoula - North US #93 (FAP 5) Milepost 0 - 10 Missoula Division

- General: The area begins on US #93 at its junction with I-90 at the DeSmitt Interchange and proceeds north for 10 miles. Numerous safety projects have been cnstructed on this section including roadway widening at the truck stop and slope flattening and delineation on some curves.
- Comments: A safety project to provide slope flattening and delineation on a curve approximately Milepost 2, is tentatively scheduled for letting of January 1981.

ACCIDENT CLUSTER DETAIL FAP 5 MP 0 - MP 10

SITE # 1 7 Accidents total 43% Northbound 29% Icy or Snowy 29% Dark

SITE # 2 5 Accidents total 20% Northbound 20% Icy or Snowy 40% Dark

Bonner - East Montana 200 (FAP 24) Milepost 0 - 10 Missoula Division

- General: The section begins near the Interstate 90 Bonner Interchange at Bonner and traverses the Blackfoot River East. Construction periods vary through the section. The beginning portion was constructed or altered to provide interstate connections. The easterly portion is basically old road with numerous curves.
- Comment: Accident history is concentrated at the beginning of the route and at a curve section commonly known as Rainbow Bend. A safety project is in the planning stage for this area. Also special side of the road delineation was placed in this area to provide positive guideance around the sharp curves.

ACCIDENT CLUSTER DETAIL P 24 MP 0 - MP 10

SITE # 1 12 Accidents total 50% Eastbound 33% Icy or Snowy 33% Dark

<u>SITE # 2</u> 5 Accidents total 40% Eastbound 40% Icy or Snowy 20% Dark

SITE # 3 21 Accidents total 43% Eastbound 14% Icy or Snowy 24% Dark

Belgrade - Bozeman Interstate 90 Milepost 300 - 310 Bozeman Division

- General: The 4-lane facility, built in the late 60's mid early 70's has a plant mix surface treatement with a V-ditch median on the majority of the section. Concrete driving lanes with asphalt shoulders are present at the beginning of the study section.
- Comment: Accident occurance is spred throughout the study area with clusters of accidents occuring at the West Bozeman Interchange and East of Bozeman on a curve section.

ACCIDENT CLUSTER DETAIL I 90 MP 300 - MP 310

SITE # 1 11 Accidents total 82% Eastbound 55% Icy or Snowy 9% Dark

· · · · · · ·

SITE # 2 15 Accidents total 0% Eastbound 53% Ecy or Snowy 40% Dark

SITE # 3 12 Accidents total 58% Eastbound 67% Icy or Snowy 42% Dark

Bozeman - Livingston Interstate 90 Milepost 310 - 320 320 - 330 330 - 340 Bozeman Division

114111 1-1

- General: This area includes three study areas contiguously and begins on the East urban limits of Bozeman traverses Bozeman Pass and ends near the Mission Interchange East of Livingston. The area at particular locations experience very high wind velocity causing limited visibility and snowdrifting during winter months.
- Comment: A high incidence of accident occurance has happened with numerous clusters on the west slope of Bozeman Pass to Bozeman. Several clusters of accident also exists in the Livingston area. A Wyoming type snowfence was installed, utilizing safety funds, at various locations near Livingstone.

ACCIDENT CLUSTER DETAILS

SITE # 1 12 Accidents total 58% Eastbound 66% Icy or Snowy 58% Dark

SITE # 2 17 Accidents total 28% Eastbound 76% Icy or Snowy 41% Dark

SITE # 3 8 Accidents total 12% Eastbound 62% Icy or Snowy 37% Dark

SITE # 4 5 Accidents total 0% Eastbound 100% Icy or Snowy 40% Dark

SITE # 5 21 Accidents total 57% Eastbound 71% Icy or Snowy 19% Dark

SITE # 6 8 Accidents total 25% Eastbound 100% Icy or Snowy 13% Dark

SITE # 7 24 Accidents total 67% Eastbound 79% Icy or Snowy 25% Dark SITE # 8 6 Accidents total 100% Eastbound 100% Icy or Snowy 17% Dark

SITE # 9 10 Accidents total 50% Eastbound 90% Icy or Snowy 30% Dark

SITE # 10 10 Accidents total 50% Eastbound 30% Icy or Snowy 20% Dark

SITE # 11 9 Accidents total 44% Eastbound 56% Icy or Snowy 67% Dark

SITE # 12 9 Accidents total 56% Eastbound 56% Icy or Snowy 11% Dark

> SITE # 13 25 Accidents total 52% Eastbound 40% Icy or Snowy 24% Dark

SITE # 14 8 Accidents total 88% Eastbound 63% Icy or Snowy 38% Dark $\frac{\text{ACCIDENT}}{\text{I}-90} \xrightarrow{\text{MP}} \frac{\text{CLUSTER}}{\text{MP}} \frac{\text{DETAILS}}{\text{310}} - \frac{\text{DETAILS}}{\text{MP}} \frac{340}{340}$ (continued)

SITE # 15 7 Accidents total 29% Eastbound 57% Icy or Snowy 29% Dark

INILE

SITE # 16 6 Accidents total 67% Eastbound 83% Icy or Snowy 0% Dark

SITE # 17 12 Accidents total 50% Eastbound 58% Icy or Snowy 25% Dark

SITE # 18 6 Accidents total 17% Eastbound 17% Icy or Snowy 50% Dark

SITE # 19 12 Accidents total 67% Eastbound 33% Icy or Snowy 8% Dark

SITE # 20 14 Accidents total 14% Eastbound 43% Icy or Snowy 57% Dark SITE # 21 10 Accidents total 50% Eastbound 70% Icy or Snowy 30% Dark

SITE # 22 6 Accidents total 67% Eastbound 50% Icy or Snowy 17% Dark

SITE # 23 7 Accidents total 29% Eastbound 100% Icy or Snowy 0% Dark

SITE # 24 7 Accidents total 100% Eastbound 29% Icy or Snowy 57% Dark

Bozeman (Gallatin Canyon) US #191 (FAP 50) Milepost 50 - 60 60 - 70 Bozeman Division

- General: This Federal Aid Primary System Roadway parallels the Gallatin River between Yellowstone Park and Bozeman. This scenic highway experiences high volume tourist traffic entering Yellowstone National Park. The roadway, built in the 50's and 60's traverses heavily timbered mountainous terrain.
- Comment: Accident experience is spead throughout the study area with numerous clusters of accidents generally located on curve sections. A safety project to install safety corrections such as guardrail roadway widening and an impact attenuator was installed in 1978 between Milepost 56 - 63. The safety corrections have not impeded snow removal. Accident experience shows a definate reduction after installation of the safety corrections. Special side of the road delineation at Milepost 50+ - 51+ installed on an experimental basis has shown a definate reduction in accidents.

ACCIDENT CLUSTER DETAILS FAP 50 MP 50 - MP 70

SITE # 1 17 Accidents total 100% Northbound 29% Icy or Snowy 18% Dark

<u>SITE # 2</u> 10 Accidents total 100% Northbound 60% Icy or Snowy 80% Dark

SITE # 3 10 Accidents total 90% Northbound 40% Icy or Snowy 50% Dark

SITE # 4 25 Accidents total 64% Northbound 80% Icy or Snowy 60% Dark

<u>SITE # 5</u> 5 Accidents total 60% Northbound 80% Icy or Snowy 40% Dark

SITE # 6 13 Accidents total 46% Northbound 46% Icy or Snowy 54% Dark

SITE # 7 14 Accidents total 43% Northbound 64% Icy or Snowy 57% Dark <u>SITE # 8</u> 7 Accidents total 86% Northbound 43% Icy or Snowy 43% Dark

<u>SITE # 9</u> 7 Accidents total 43% Northbound 57% Icy or Snowy 23% Dark

<u>SITE # 10</u> 6 Accidents total 67% Northbound 67% Icy or Snowy 17% Dark

SITE # 11 10 Accidents total 70% Northbound 50% Icy or Snowy 30% Dark

SITE # 12 10 Accidents total 50% Northbound 50% Icy or Snowy 60% Dark

FAP 50

MILEPOST 50 - MILEPOST 70
ACCIDENT CLUSTER SITES
INDIVIDUAL ACCIDENTS Scale: 1 inch = 1 mile

CREEK

PORTAL

2

MIL 500

ACCIDENT CLUSTER DETAIL FAP 1 MP 210 - MP 220

SITE # 1 10 Accidents total 40% Eastbound 70% Icy or Snowy 20% Dark

SITE # 2 8 Accidents total 50% Eastbound 88% Icy or Snowy 13% Dark East Glacier - Northeast US #2 (FAP 1) Milepost 210 - 220 Havre Division

General: The study area is a two-lane F.A. Primary Roadway with three construction sections within the area. The majority of the section was built in 1977. The west end, approximately two miles, was constructed in the 1940's and the east end of the study area, approximately one mile, was constructed in the 1940's.

Comment: Accident history is spread out through the study area. A reduction in accident occurance is noted on the newer constructed section. A clustering of accidents has occured on or near the Two Medicine Bridge east of East Glacier.

DM:dk:34D

ACCIDENT CLUSTER DETAIL I-90 MP 430 - MP 440

SITE # 1 18 Accidents 72% Eastbound 39% Icy or Snowy 50% Dark

SITE # 2 11 Acidents 45% Eastbound 73% Icy or Snowy 36% Dark

SITE # 3 22 Accidents 0% Eastbound 27% Icy or Snowy 15% Dark

SITE # 4 12 Accidents 100% Eastbound 58% Icy or Snowy 25% Dark

SITE # 5 9 Accidents 89% Eastbound 22% Icy or Snowy 44% Dark

SITE # 6 16 Accidents 56% Eastbound 75% Icy or Snowy 50% Dark SITE # 7 9 Accidents 33% Eastbound 33% Icy or Snowy 44% Dark

SITE # 8 12 Accidents 42% Eastbound 8% Icy or Snowy 83% Dark

SITE # 9 16 Accidents 69% Eastbound 50% Icy or Snowy 44% Dark

SITE # 10 11 Accidents 55% Eastbound 18% Icy or Snowy 45% Dark

SITE # 11 6 Accidents 17% Eastbound 50% Icy or Snowy 50% Dark Laurel East and West Interstate 90 Milepost 430 - 440 Billings Division

General: This Study area is a four-lane facility built in the 1960's and includes numerous interchanges. The roadway has a plant mix surface treatment and experiences high local traffic volumes.

Comment: Accident experience is spread throughout the study section. Clusters of accidents have occured in the interchange areas and on the tangent section near Milepost 438.

ACCIDENT CLUSTER DETAIL I 90 MP 230 - MP 240

SITE # 1 9 Accidents total 56% Eastbound 67% Icy or Snowy 56% Dark

SITE # 2 8 Accidents total 25% Eastbound 100% Icy or Snowy 75% Dark

> SITE # 3 18 Accidents total 39% Eastbound 67% Icy or Snowy 44% Dark

> SITE # 4 12 Accidents total 58% Eastbound 75% Icy or Snowy 33% Dark

> SITE # 5 12 Accidents total 83% Eastbound 83% Icy or Snowy 17% Dark

SITE # 6 14 Accidents total 79% Eastbound 71% Icy or Snowy 29% Dark

SITE # 7 8 Accidents total 63% Eastbound 100% Icy or Snowy 50% Dark

SITE # 8 14 Accidents total 79% Eastbound 14% Icy or Snowy 29% Dark Butte - Whitehall (Homestake Pass) Interstate 90 Milepost 230 - 240 Butte Division

General: This study section is a four-lane facility built in 1966 and has a plant mix surface treatment and crosses the Continental Divide at Homestake Pass. One interchange is affected, located on top of the pass.

Comment: Accident history is spread throughout the section. Several clusters of accidents are present particularily on horizontal curve sections and at the area of the interchange. Safety improvements, particularily directed for large trucks, has been placed on the east slope of Homestake Pass.

ACCIDENT CLUSTER DETAILS I - 90 MP 170 - MP 180

<u>SITE # 1</u> 6 Accidents total 67% Eastbound 17% Icy or Snowy 17% Dark

<u>SITE # 2</u> 6 Accidents total 33% Eastbound 33% Icy or Snowy 17% Dark

SITE # 3 17 Accidents total 53% Eastbound 41% Icy or Snowy 59% Dark

SITE # 4 19 Accidents total 42% Eastbound 16% Icy or Snowy 21% Dark

SITE # 5 16 Accidents total 25% Eastbound 31% Icy or Snowy 38% Dark SITE # 6 9 Accidents total 67% Eastbound 44% Icy or Snowy 44% Dark

SITE # 7 26 Accidents total 4% Eastbound 38% Icy or Snowy 31% Dark

SITE # 8 7 Accidents total 57% Eastbound 57% Icy or Snowy 0% Dark

Garrison Interstate 90 Milepost 170 - 180 Missoula and Butte Division

- General: The majority of this study area was under construction at the time of the field review. The roadway section from Milepost 176+ was constructed in 1976.
- Comment: Accident information showen on the accompanying map should be disregarded except for information shown from Milepost 176+ to 180. Accidents shown between 170 - 176+ reflect occurance on the old traveled way.

<u>I - 15</u>

MILEPOST 120 - MILEPOST 130 ACCIDENT CLUSTER SITES INDIVIDUAL ACCIDENTS Scale: | inch = | mile

ACCIDENT CLUSTER DETAILS I 15 MP 120 - MP 130

SITE # 1 15 Accidents total 100% Northbound 13% Icy or Snowy 27% Dark

SITE # 2 6 Accidents total 0% Northbound 33% Icy or Snowy 50% Dark

SITE # 3 10 Accidents total 40% Northbound 20% Icy or Snowy 30% Dark

SITE # 4 26 Accidents total 54% Northbound 35% Icy or Snowy 46% Dark

SITE # 5 21 Accidents total 76% Northbound 48% Icy or Snowy 38% Dark SITE # 6 18 Accidents total 50% Northbound 50% Icy or Snowy 56% Dark

SITE # 7 11 Accidents total 45% Northbound 36% Icy or Snowy 45% Dark

SITE # 8 18 Accidents total 39% Northbound 28% Icy or Snowy 22% Dark

<u>SITE # 9</u> 13 Accidents total 38% Northbound 38% Icy or Snowy 23% Dark Butte East and West Interstate 15 Milepost 120 - 130 Butte Division

- General: The study section traverses the city of Butte and includes numerous interchnages. High traffic volumes and turning maneuvers attribute in part to the high incidence of accidents. The majority of the roadway in this section was constructed in the 1960's.
- Comment: Clusters of accidents have occured at all the interchange areas in this section. Cluster also occured on the west side of Butte where a left hand off ramp is present. Frequent accident occurance is spread throughout the section.

<u>P 86</u>

MILEPOST O - MILEPOST IO ACCIDENT CLUSTER SITES INDIVIDUAL ACCIDENTS -Scale: | inch = | mile

ACCIDENT CLUSTER DETAIL P 86 MP 0 - MP 10

SITE # 1 17 Accidents total 59% Northbound 47% Icy or Snowy 41% Dark

SITE # 2 7 Accidents total 43% Northbound 29% Icy or Snowy 29% Dark

SITE # 3 20 Accidents total 35% Northbound 65% Icy or Snowy 10% Dark

SITE # 4 8 Accidents 50% Northbound 38% Icy or Snowy 50% Dark

SITE # 5 7 Accidents total 14% Northbound 86% Icy or Snowy 14% Dark Bozeman (Bridger Canyon) Mont. 86 (FAP 86) Milepost 0 - 10 Bozeman Division

- General: This study section begins in downtown Bozeman and extends northeasterly through the Bridger Canyon. This roadway is heavily used during the winter months providing access to winter sport areas. The roadway includes a detour section due to a slide condition. The roadway varies in width depending on different construct projects, however, the roadway is a two-lane plant mix surface facility.
- Comment: Heavy concentrations of accidents is evident in the first 5+ miles of the section. This can be attributed to, in part, high traffic volumes, intersections and uncontrolled access. A cluster of accidents is identified at the intersection of Mont. 86 and Griffin Drive. A safety project to alter the geometrics of this intersection is planned. A preliminary engineering program for the correction of the slide area at milepost 5+ is also in force. A horizontal curve at Milepost 8.8 - 9.3 has been identified as a high accident rate cluster area and improved advanced warning is planned.

